Ques.

A carpet of mass M and of inextensible material is rolled along its length in the form of a cylinder of radius R and is kept on a rough floor. The carpet starts unrolling without sliding on the floor where a negligibly small push is given to it. The horizontal velocity of the axis of the cylindrical part of the carpet when its radius reduces to R/2. is $\sqrt{\frac{xgR}{3}}ms^{-1}$, then x is :

$$\mathbf{M}_{\mathrm{initial}} = \pi R^2 L \rho$$

$$M_{ ext{final}} = \left(rac{R}{2}
ight)^2 \cdot L \cdot
ho = rac{M_i}{4}$$

Initial PE of carpet $= Mg \cdot R$

Final PE of carpet
$$= \frac{M}{4} \cdot g \cdot \frac{R}{2} = \frac{MgR}{8}$$

$$\Delta PE$$
 decrease = $rac{7}{8}MgR$

It's equal to gain in KE.

$$=K_{ ext{tran}}+K_{ ext{Rot}}=rac{1}{2}Mv^2+rac{1}{2}I\omega^2$$

using mass
$$=\frac{M}{4}$$

$$v = \frac{R}{2} \cdot \omega \, I = \frac{1}{2} \left(\frac{M}{4} \right) \left(\frac{R}{2} \right)^2$$

$$K = rac{1}{2} \left(rac{M}{4}
ight) v^2 + rac{1}{2} \left(rac{MR^2}{32}
ight) \left(rac{2v}{R}
ight)^2 = rac{3}{16} M v^2$$

Equating
$$rac{7}{8}MgR=rac{3}{16}Mv^2$$

$$v=\sqrt{rac{14gR}{3}}$$

The correct answer is: 14